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Abstract 
How results are reported influences how
they are interpreted. Although P values
have been granted great importance, they
have no clinical interpretation. Rather,
they are a measure of chance as an
explanation for the results. Their either-
or interpretation takes attention away
from the results themselves–the
difference between groups or the effect
size–which are more important. Effect
sizes are also estimates. Estimates are
only useful if they are accompanied by a
measure of precision. In medicine, this
measure is usually the 95% confidence
interval (CI). This article explains the
concepts underlying CIs and illustrates
how they are more useful than P values
in reporting research. As such, journals
are increasingly asking for CIs, instead of,
or at least in addition to, P values. 

Introduction
Statistics can be divided into two broad
areas: descriptive statistics, in which data
are summarised in a few numbers to make
them more manageable, such as percentages
and medians, and inferential statistics, in
which measurements of a sample are
generalised to the population from which
the sample was drawn. This article is
concerned with inferential statistics; in

particular, the reporting of estimates and
confidence intervals.

Most medical research is done on
samples, but the findings are actually
estimates of what we would expect if the
treatment were to be given to the population
from which the sample was drawn. For
example, we can’t study all patients with, say,
epilepsy, we can only study a sample of such
patients. When we’re done, we hope that
what we have learned from the sample will
also be true for all patients who have
epilepsy. 

However, the sample is almost always
only a tiny fraction of the population, so we
need to know how good our estimate is. In
medicine, this measure of precision is most

often expressed as a confidence interval
(CI), usually a 95% CI, although the
“confidence coefficient” (the 95%) may be
90% for smaller samples and theoretically
can be any number. Thus, understanding
estimates and confidence intervals is
important to understanding the medical
literature.

In this article, I illustrate the concepts
underlying estimates and confidence intervals
with a hypothetical example. Hypothetical,
because the concepts involved differ from
the actual research methods and mathe -
matics used to compute the confidence
intervals. After giving the example, I’ll
explain how the confidence interval is
actually determined. Interested readers are
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invited to read Statistics without Tears, by
Rowntree1 for a fuller description of the
approach taken here and How to Report
Statistics in Medicine, by Lang2 for more
information about reporting estimates and
confidence intervals.

Background information
Before we can talk about estimates and
confidence intervals, we have to review
some basic concepts of probability. In
particular, we need to review the properties
of the “normal distribution” or the gaussian
or bell-shaped curve.

In any normal distribution, the mean
value equals the median value equals the
modal value, and the curve is symmetrical
about the mean. It also has two “inflection
points” where the curve changes direction
to give it its bell shape. Most importantly,
the area under the curve can be described in
units of standard deviation (SD), and this
relationship holds for any normal distrib -
ution (Figure 1). Importantly, this relation -

ship allows us to compare values on any
normal distribution with those of any other,
no matter how peaked or flattened the curves. 

Suppose we wanted to compare patient
survival in two groups of different sizes. It
wouldn’t be fair to compare the raw
numbers of survivors between groups
because one group is larger than the other.
Instead, we convert the raw numbers into a
common unit – percentages – to accomm -
odate the difference in group size and then
compare the percentages.

Now, suppose we want to compare two
different normal distributions. Linda took
the final exam in her law class, and Bill took
his in economics. We want to compare their
scores to determine who is the better
student (Figure 2). We can’t compare Bill’s
score of 90 to Linda’s score of 80 because
each test has a different distribution of
values; one test had more questions than the
other, which changes the range of possible
scores, or maybe one class had more
variability than the other because more

people did well and more people did poorly
on the test.

As we did with percentages, however, we
can compare scores from different distrib -
utions if we can express the values in a
common measure. We do this by converting
raw scores into units of SD (a “standard
score,” or z-score), which we can then
compare on a common distribution. A score
equal to the mean value of the common
distribution (or “standard normal distribut -
ion”) has an SD of zero; half the values are
less than the score and half are greater. 
A score 1 SD above the mean is greater than
about 84% of the values (50% to the left of
the median or center value plus 34%) and
less than about 16%, whereas a score of -1
SD below the mean is greater than about
16% of the values and less than about 84%
(Figure 1). 

Getting back to Bill and Linda, if we now
express the two scores in terms of SDs, we
see that Bill’s score of 90 was 2 SD above the
mean in his class, and Linda’s was 3 SD
above the mean in her’s. So, Bill did better
than about 97.5% of his classmates, but
Linda did better than about 99.9% of hers.
Linda did relatively better, even though her
raw score was less than Bill’s.

It is important to remember that the SD
indicates these proportions only for normal
distributions. So, normal distribut ions can
be appropriately summarised with means
and SDs, but distributions of other shapes
should be summarized with different
descriptive statistics. 

Estimating a population value
An estimate is a probable value for a
population that is inferred from a measured
value of a sample. In medicine, we some -
times want to estimate the value of a physical
trait in a population, such as average birth
weight. We might also want to estimate the
response to an intervention, such as
differences between groups (“between-
group comparisons”) or in the same group
before and after treatment (“with-in group
comparisons”). 

Here’s the hypothetical example. Imagine
a gnome, a mythical being that guards the
earth’s underground treasures. Gnomes have
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Figure 1. The relationship between the standard deviation and the area under the normal
curve holds for all normal distributions, no matter how flat or peaked. 
In a distribution of data, the SD is the preferred “measure of dispersion,” or spread of the
data. Other normal distributions have an SD, but the name changes to connect it with the
distribution. In a distribution of all possible sample means, as described below, the SD is
called the standard error of the mean (SE). It has the same mathematical properties as the
SD, it’s just associated with a different distribution. 
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only been seen in small groups, however, so
no one knows how tall the average gnome is.
Thus, our research question is “How do we
estimate the average height of all gnomes if
we can only measure a few of them?” 

Suppose that a gnome magically appears
on your desk. You measure him and find that
he is exactly 10 cm tall (Figure 3).
What’s our best guess about
the average height of all
gnomes? The answer is 10
cm, because it’s all the
information we have in a
sample size of 1. 

Now suppose a
second gnome app -
ears beside the first one.
This gnome could be
10 cm, but probably
he will be a little bigger
or a little smaller. Supp -
osed he is 11 cm tall. Now,
what is our best guess about
the average height of all
gnomes? The answer is: 10.5 cm,
because it’s all the inform -
ation we have. That is, we

average the heights of our sample of two,
which is 10.5 cm. In fact, the sample mean
is the best estimate of the pop ul at ion
mean because it uses all the available data.

We could repeat this process if, say, 10
gnomes were to appear: measure the height
of each gnome and then calculate their mean

height. This sample
mean will, again, be the
best estimate of the

mean height of the gnome population. The
same is true for other characteristics of the
sample as well: for medians, ranges, and
standard deviations, for example.

Notice that our sample was small: 10
gnomes out of a population of several
thousand gnomes (or so I’ve been told).
With so many gnomes, how likely is it that
our estimate, based on 10 gnomes, is
accurate? If we happened to get a single
sample containing the smallest gnomes, we
would underestimate the average height in
the population, and if we happened to get a
sample containing the largest gnomes, we
would overestimate it. What we need is a
way to determine how precise our estimate
might be. This measure is the confidence
interval.

The hypothetical example
illustrating confidence
intervals
Suppose we have unlimited resources and
unlimited cooperation of all the gnomes,
such that we can take all possible random
samples of, say, 10 gnomes. In other words,
we draw a sample of 10 gnomes, measure
the height of each, calculate the sample
mean, graph the mean, and then return the
gnomes to the population. We then draw
another sam ple of 10 gnomes and repeat the
process: measure each one,
calculate the sample mean,
graph the mean, and
return the gnomes to
the pop ul ation. We
repeat this process
until we have
taken samples of
every possible
combination of
10 gnomes
(Table overleaf).
(You can see
why the example
is fictit ious: agen -
cies fund ing research
into gnomes won’t pay
for this kind of sampling.)

When we graph the means
of all our samples (Figure 4), we find
that they are normally distributed. (This
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Figure 2. Comparing two distributions of different proportions with the standard deviation.
The distributions of scores on the law and economics tests are shown below the standard
normal distribution. Linda’s raw score of 80 is 3 SD above the mean in her class, and Bill’s is
2 SD above the mean in his. Clearly, Linda did relatively better than Bill on her test.

Bill      Linda

Economics test scores

Law test scores

Figure 3. A gnome 
10 cm tall. 
If this gnome is the
only one we’ve
measured, our best
estimate of the
average height of all
gnomes is 10 cm
because that is all the
information we have.
The mean of the
sample is best
estimate of the mean
of the population.

10cm
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result is explained by what is called “the
central limit theorem,” which I won’t address
here.) Remember that the “area under the
curve” can be expressed in units of standard
deviation. More importantly, the mean of this
graph of sample means is, again, our best
estimate of the population mean. Now,
however, instead of a single sample mean, we
have a distribution of sample means. When we
had a sample of data, we called the measure
of dispersion the standard deviation (SD).
Now we have a distribution of sample means,
so we are going to call the standard deviation
the “standard error of the mean (SE).” 

The SD and SE represent the same
concept and have the same mathematical
properties: both can be used to indicate the
area under a normal curve. The only
difference is that the standard deviation is a
descriptive statistic that indicates the
variability of a distribution of data, whereas
the standard error of the mean is an
inferential statistic that indicates the
variability of an estimate; that is, the
variability of the distribution of the means
of all possible samples of the same size.

Remember that about 68% of the data
will be included in the range defined by -1
SD below the mean to +1 SD above the
mean, and that about 95% will be included
between -2 SD and +2 SD. These relation -
ships are the same for the SE: about 68% of
the sample means will be included in the
range defined by -1 SE below the mean of
the sample means to +1 SE above the mean,

and about 95% will be included between -2
SE and +2 SE (Figure 5).

The mean of this distribution of sample
means is the best estimate of the population

mean, and the range given by plus or minus
2 SEs is a 95% CI. In other words, we
measured only samples of gnomes, and the
estimate varied from sample to sample.
However, the mean in 95 of 100 samples of
10 will probably fall within the range
defined by 2 SEs above and below the mean
of our distribution of sample means. 

Calculating confidence
intervals
In reality, we generally measure only a single
sample. The (measured) sample mean is the
best estimate of the population mean, and
the 95% CI is calculated from the SE with
the simple formula:

SE =      
Standard deviation of the sample

     Square root of the sample size

One SE on either side of our mean of
sample means is about a 68% CI. To get the

Sample Sample
Height of each of 10 gnomes in the sample, cm

No. 1 2 3 4 5 6 7 8 9 10 means
1 16 11 5 14 7 13 12 13 15 20 12.6
2 16 12 12 2 4 5 14 7 11 8 9.1
3 1 9 2 6 8 10 4 7 2 10 5.9
4 2 8 3 19 13 9 6 6 14 5 8.5
5 14 4 18 13 12 5 19 11 8 8 11.2
6 14 11 2 2 9 17 11 10 8 16 10
7 5 3 13 11 1 14 13 3 8 7 7.8
8 6 15 13 11 9 13 6 7 15 2 9.7
9 18 14 3 8 14 9 12 7 2 17 10.4

10 3 5 5 2 20 7 14 4 7 7 7.4

Table. The Heights of 100 Gnomes as Collected in 10 Samples of 10 Gnomes.
The overall mean (SD) of the 10 sample means is 9.3 (2.0) cm, which is the best estimate
of the mean height (and SD) of the gnome population. The SE equals the standard
deviation of the sample (2.0) divided by the square root of the sample size of 10 (3.2), or
0.63. Twice the SE is 1.3, so the mean -2 SE = 8 and the mean +2 SE = 10.6 cm, giving us
an estimated mean of 9.3 cm (95% CI, 8 to 10.6 cm). See text for details.

Figure 4. The conceptual process of creating a 95% confidence interval around the 
estimated mean height. 
Upper panel: we take all possible samples of the same size from the population of interest,
compute the mean height of each sample, and graph the means. Lower panel: the new
distribution of means will be normally distributed, so 95% of the samples we drew had means
that ranged between two SEs above and below the overall mean of the new distribution. 
The overall mean is the estimated height, and the range between the mean plus and minus 
2 SEs is the 95% interval for the estimate.

Population distribution

Distribution of sample
data of size n

Distribution of sample
data of size n

True population mean

Estimated population mean

SE = standard error of the mean

CI = confidence interval

Sample means

Mean ± 2 SE = 95% CI

± 1 SE
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95% CI, we essentially double the SE, which
gives the range of values in which we expect
the mean height to fall in 95 of 100 similar
samples.

Using data from the example in the table,
the mean of the distribution of all possible
samples of the same size (although only 10
are shown here) is 9.26 cm. The SE is 1.96,
and 2 SEs equal about 3.8. Adding and
subtracting the 3.8 to the mean of 9.26 gives
us an estimated height of 9.26 cm with a
95% CI of 6.2 to 13.8 cm.

The value of confidence
intervals
Confidence intervals have enormous value
in reporting the results of medical research.
The results of most biomedical studies (that
is, the “effect size”) are actually estimates
and so should be accompanied by CIs. In
addition, CIs are increasingly preferred to P
values when reporting results. The P value
is a mathematical measure of chance as an
explanation and has no biological interpret -
ation. On the other hand, CIs keep the
interpretation focused on the biological
implications of the effect size.

Here’s an example of the value of
confident intervals. Consider this sentence:

“The drug reduced diastolic blood
pressure (DBP) by a mean of 15 mm Hg 
(95% CI = 3.5 to 26.5 mm Hg; P = 0.01).”

In this particular study, the effect size was
a reduction in DPB of 15 mm Hg, and the
reduction was statistically significant. That
is, if the drug did nothing (the assumption
of the null hypothesis), we would expect to
get a reduction in DBP of 15 mm Hg or
higher by chance in only 1 of 100 similar
studies. Given that low probability, we
decide that the drug was probably
responsible for the reduction (we “reject the
null hypothesis”). 

Let’s assume that the 15-mm Hg
reduction in DBP is clinically important.
Although this result is statistically significant
and clinically important in this particular
study, the 95% CI tells us that the reduction
in DBP would probably range from 3.5 to
26.5 mm Hg in 95 of 100 similar studies. 
A drop of 26.5 mm Hg is clinically
important, but a drop of only 3.5 mm Hg
probably is not. That is, the confidence is
“hetero gen eous”: it contains both clinically
important and clinically unimportant values.
So, we can’t really say for sure that the drug
is effective in 95 of 100 trials; our 15-mm Hg
estimate is not precise enough. We need to
do the study again, probably with a larger
sample, to improve (narrow) the precision
of the estimate. When all the values in the
CI are clinically important (or when all are
not clinically important)–that is, when the
CI is “homogenous”–we have a more

definitive answer to our question about the
efficacy of the drug.

The misuse of the standard
error of the mean
The SE is often used incorrectly as a
descriptive statistic. Especially in the basic
life sciences, measurements are routinely
reported as means and SEs. This practice is
established and poses no problem to those
who are used to seeing measurements
presented this way. However, because the SE
is always smaller than the SD, it makes
measurements look more precise than they
would look if they were reported with SDs,
so this distortion needs to be kept in mind
when interpreting the SE. My research,
which mostly concerns statistical reporting
in clinical medicine, indicates that the SE is
appropriately reported in only a few
circumstances, such as in tables reporting
regression analysis. The SD is preferred to
describe a distribution of data, and the 95%
CI is the preferred measure of precision for
an estimate.
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Figure 5. The distribution of sample means in the example (summarised in the Table) 
of estimating the average height of gnomes.

Distribution of means or all possible samples of ten gnomes mean
(95% CI) = 9.3cm (8.0 to 10.6 cm
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