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Abstract 
Real-world evidence (RWE) complements 
randomised controlled trials (RCTs) by 
assessing treatment effectiveness in diverse 
populations. Integrating artificial intelligence 
(AI) and machine learning (ML) enhances 
RWE by enabling predictive modelling, risk 
stratification, and clinical decision support. 
ML techniques like supervised or unsuper -
vised learning, logistic regression, decision 
trees, random forests, and XGBoost can help 
optimise regulatory decision-making and 
patient care. This paper explores how the 
AI/ML models help identify high-risk 
patients, predict disease progression, and 
assess healthcare burden. The medical writer’s 
role in structuring findings into clinically 
meaningful insights is essential for bridging 
the gap between data science and clinical 
application. As AI advances, skilled medical 
writers will ensure transparency, ethical 
compliance, and effective communication of 
AI-driven RWE findings. 

 
 
 
Introduction 

n
andomised controlled trials (RCTs) are 
the gold standard for establishing causality 

in controlled settings, yet their findings often lack 
applicability to diverse real-world populations 
with varying genetic backgrounds, comorbid -
ities, and treatment regimens. This “efficacy-

effectiveness gap” limits the generalisability of 
RCT outcomes, posing challenges for regulatory 
decision-making.1 To bridge this gap, healthcare 
stakeholders, including pharmaceutical 
companies, regulatory agencies, and health 
technology assessment (HTA) organizations, 
increasingly integrate real-world data (RWD) 
with RCTs.2 Enabled by technological advance -
ments, RWD comprising electronic health 
records (EHRs), registries, claims data, and 
mobile health applications offers valuable 
insights into routine healthcare delivery and 
patient outcomes. 

When analysed, RWD gen -
erates real-world evidence (RWE), 
informing treatment effectiveness, 
safety, and economic impact, 
thereby supporting data-driven 
healthcare decisions and enhanc -
ing clinical and regulatory 
strategies.3,4 The healthcare in -
dustry is witnessing an un preced -
ented transformation driven by artificial 
intelligence (AI) and machine learning (ML), 
which are redefining RWE generation, inter -
pretation, and utilisation.5 RWD, encompassing 
EHRs, claims data, patient registries, and 
wearable device outputs, offers vast potential to 
complement traditional clinical trials.6 

AI/ML algorithms enable efficient pro -
cessing, analysis, and predictive modelling of 
these complex datasets, leading to actionable 
insights that improve patient outcomes, optimise 
treatment pathways, and guide regulatory 
decisions.7 AI is significantly transforming the 
use of RWE in healthcare by facilitating more 
precise data analysis and decision-making. AI 
technologies are instrumental in analysing vast 
and complex RWD sources. These AI-driven 
approaches help identify patterns in treatment 
responses, predict patient outcomes, and 
improve clinical decision-making by integrating 
RWD into the healthcare system.8,9 

However, as AI continues to revolutionize 
healthcare research, a critical challenge has 
emerged: the communication of complex, 
algorithm-driven insights to various healthcare 

stakeholders.10 Regulators, clinicians, pharma -
ceutical companies, and policymakers require 
clear, precise, and scientifically accurate 
interpretations of AI-generated RWE.11 Medical 
writers serve as essential intermediaries, ensuring 
that interpretations of AI-generated RWE are not 
only methodologically sound but also com -
prehensible, regulatory-compliant, and aligned 
with healthcare decision-making frameworks. 

This paper explores the evolving landscape of 
AI-driven RWE, highlighting key ML techniques, 
such as clustering techniques, dimensional 

reduction algorithms, logistic 
regression (LR), decision trees 
(DT), random forests (RF), and 
extreme gradient boosting 
(XGBoost). It also delves into the 
role of medical writers in bridging 
the gap between complex AI/ML 
outputs and stakeholder needs, 
ensuring that scientific narratives 
derived from AI/ML-driven 

analytics are both accessible and impactful. 
 
AI/ML techniques in RWE generation 
The integration of AI/ML into RWE research 
enables the extraction of valuable patterns and 
insights from vast datasets. Supervised, unsuper -
vised, and reinforcement learning are core ML 
approaches applied in healthcare and RWE 
generation. Supervised learning uses labelled 
data with known outcomes to train predictive 
models – such as LR, DT, RF, and XGBoost – 
that are commonly applied in diagnosing 
conditions like diabetes or hypertension. This 
approach follows a defined, iterative process 
involving data selection, processing, model 
training, and evaluation using metrics like 
receiver operating characteristic (ROC) curves 
and confusion matrices. 

Unsupervised learning, on the other hand, 
works with unlabelled data to identify hidden 
structures or patterns using techniques such as 
clustering algorithms (e.g., k-means, hierarchical 
clustering) and dimensionality reduction 
methods like principal component analysis 
(PCA), which help group patients or detect 

AI identifies the 
patterns, medical 
writers connect 

them to patients, 
policies, and 

practice. 
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anomalies without predefined outcomes, though 
careful interpretation is necessary. Reinforce -
ment learning allows systems to learn optimal 
decisions through trial and error, guided by 
feedback or rewards, making it promising for 
dynamic treatment decision support, despite 
challenges in defining rewards and causal 
pathways. The following section highlights key 
ML techniques and explores their applications in 
predicting clinical outcomes. 
 
Supervised learning approaches 
Logistic regression (LR) 
LR is a foundational ML technique widely used 
in healthcare for binary classification tasks. It 
models the probability of an event occurring as a 
function of predictor variables, making it valuable 
for predicting clinical outcomes, adverse events, 
and patient risk stratification.12 LR is a valuable 
tool for identifying high-risk patient groups by 
calculating a probability score that classifies 
patients into high-risk or low-risk categories, 
helping prioritise those needing immediate care. 
LR models are particularly useful in healthcare 
settings where predicting patient outcomes based 

on historical data can significantly enhance 
patient safety and clinical decision-making.13 
Performance metrics such as accuracy, precision, 
recall, F1-score (harmonic mean of 
precision and recall), and area 
under the curve (AUC)-ROC 
assess how well the model classifies 
patients.14 

The model’s coefficients show 
the contribu tion of each factor to a 
patient’s risk level, with positive 
coefficients indicating a higher 
likelihood of being high-risk. The 
confusion matrix and ROC curve 
offer insights into how well the 
model distinguishes between high- 
and low-risk patients or slow and 
fast progressors. By analysing these results, 
healthcare providers can identify key risk factors 
and apply targeted interventions for better 
patient outcomes.15 
 
Decision trees (DTs) 
DTs use hierarchical structures to segment 
patient populations based on predictor variables, 

making them effective for classification and 
regression problems. A DT starts with a root 
node representing the entire dataset, which is 

then split into branches based on 
feature values.16 These branches 
lead to decision nodes and 
eventually to leaf nodes, which 
represent the outcome. For 
example, a DT model was used to 
predict the risk of cardiovascular 
events in a large patient data set by 
analysing factors such as blood 
pressure and cholesterol levels, 
providing a clear pathway for 
targeted interventions.17 Each 
decision helps categorise a patient 
as high-risk or low-risk. The model 

is easy to interpret, as it shows exactly how the 
decision is made at each branch.18 

A DT approach may be better than LR due to 
its ability to capture non-linear relationships and 
handle mixed data types. While LR assumes a 
linear relationship between the predictors and 
the outcome, DTs can model complex 
interactions between variables without requiring 

As real-world 
evidence evolves, 
medical writing 

expertise ensures 
that data-driven 

insights are 
ethically sound 
and clinically 

actionable.
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any assumptions about the data distribution. This 
flexibility allows DTs to provide more accurate 
predictions in cases where the relationships 
between variables are not straightforward.18 One 
of the key strengths of DTs is their 
interpretability. The model visually represents 
how decisions are made at each branch, showing 
the exact conditions that lead to a particular 
classification. This transparency is particularly 
valuable in healthcare, where understanding the 
rationale behind risk predictions is crucial for 
clinical decision-making. 

Healthcare providers can easily follow the tree 
structure to see how different patient-related 
factors contribute to the risk classification. DTs 
can also predict the importance of features, 
highlighting which variables have the most 
significant impact on the model’s predictions. 
Through understanding the importance of 

different features, healthcare providers can focus 
on the most influential factors when designing 
interventions to reduce readmission rates. 
Healthcare providers can also gain deeper 
insights into patient-related factors and their 
impact on risk classification by leveraging DTs. 
This clarity helps in identifying patients who are 
likely to transition to higher risk categories, 
enabling targeted interventions that improve 
patient outcomes.18 
 
Random forests (RFs) 
RF is a powerful ensemble learning method that 
leverages multiple DTs to improve the accuracy 
and robustness of predictions. Unlike a single DT, 
which can easily overfit and perform poorly on 
unseen data, an RF builds many DTs using 
random sampling (bootstrap sampling) of both 
the data points and the features at each split.19 

This aggregation of multiple trees ensures that 
individual tree biases and variance are minimised, 
resulting in a more stable and reliable model.20 

An RF can handle complex interactions between 
features and make better predictions, especially 
when simpler models like LR or single DT do not 
yield satisfactory results.21 

Each tree in an RF is built from a random 
subset of the data and features, which helps to 
reduce overfitting and improve generalization to 
new data. The final prediction is made by 
averaging the predictions of all the trees in the 
forest, which enhances the model’s accuracy and 
robustness. For example, an RF model was used 
to predict phenotype transformations by 
analysing complex genetic and environmental 
interactions. This approach improved the 
accuracy of predictions and helped identify key 
factors driving phenotype changes, providing 
valuable insights for personalised medicine.22  
RF models can also provide insights into feature 
importance, indicating which variables have the 
most significant impact on the predictions. 
 
XGBoost 
XGBoost is a highly efficient and powerful 
boosting algorithm that builds trees sequentially, 
with each tree correcting the errors of the 
previous one by focusing on misclassified data 
points, thereby improving the model’s predictive 
power and accuracy.19 It optimises both speed and 
performance by using regularisation techniques 
to prevent overfitting and by im plement ing 
efficient tree-building algorithms.23 XGBoost has 
several advantages compared to other algorithms, 
such as its ability to handle missing data and 
highly parallelizable code in large and complex 
datasets. It employs a novel sparsity-aware 
algorithm for sparse data and a weighted quantile 
sketch for approximate tree learning. This makes 
it particularly suited for applications in healthcare, 
where datasets can be vast and intricate. 

In predicting patient risk for transitioning to 
an advanced disease stage, XGBoost can analyse 
a multitude of variables, including genetic factors, 
medical history, and lifestyle habits. By 
identifying small patterns and interactions that 
may be crucial for accurate predictions, XGBoost 
provides a robust tool for risk stratification. For 
instance, in a study predicting the progression of 
chronic kidney disease, XGBoost outperformed 
other models by accurately identifying patients 
at high risk of rapid disease progression.24 
XGBoost also provides insights into feature 
importance, highlighting which variables have 
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the most significant impact on the model’s 
predictions. This information is valuable for 
healthcare providers as it helps identify key risk 
factors and prioritise interventions. 

 
Unsupervised learning algorithms 
Unsupervised learning algorithms are used in 
RWD analysis to detect clusters, reduce dimen -
sion ality, and uncover latent structures. They are 
increasingly featured in health economics and 
outcomes research (HEOR), pharmacovigilance, 
and post-market surveillance. Common tech -
niques used are clustering (e.g., k-means, 
hierarchical clustering), which groups similar 
patients based on multiple clinical and demo -
graphic variables, and dimensionality reduction 
(e.g., PCA, t-SNE), which simplifies high-
dimensional data to reveal visual patterns or key 
contributors. 

The key outputs are cluster assignments, 
group labels, visualisations (heatmaps, dendro -
grams, scatter plots), and metrics (silhouette 
score, variance explained, cluster centroids). In 
one example, unsupervised clustering helped 
identify three distinct patient subtypes within the 
chronic kidney disease population.25 One sub -
group, comprising 30% of the population, 
showed frequent treatment switching and higher 

hospitalisation rates, indicating a high-risk 
phenotype with possible unmet needs. 
 
The contribution of medical writers 
Medical writing encompasses a broad and 
complex field, from clinical trials to regulatory 
submissions and from medical education to 
patient communication. Medical writers play a 
crucial role in translating complex medical 
information from research studies, clinical trials, 
and scientific articles into clear content. 
Balancing scientific accuracy using reliable 
evidence with clarity for the intended audience 
is a key challenge in healthcare. By adhering to 
ethical standards, medical writers maintain the 
trust of the scientific community and public 
while enhancing medical practices and 
knowledge.26 Table 1 shows the key responsi -
bilities of medical writers in translating RWE 
model results.27   

 
Medical writing best practices in RWE studies 
In the context of RWE generation, medical 
writers serve as critical knowledge translators 
responsible for accurately interpreting, con -
textualising, and communicating complex data to 
a wide array of stakeholders. Several case studies 
and whitepapers highlight the role of medical 

writers in successful AI-driven RWE projects.28,29 

For example, a study using AI to analyse EHRs 
for predicting cardiovascular outcomes required 
medical writers to translate complex ML models 
into actionable insights for clinicians.30 Another 
case involved the use of natural language 
processing to extract RWE from unstructured 
clinical notes,31 with medical writers ensuring the 
findings were accurately represented in 
regulatory submissions. 

As well as RWE generation, AI/ML have 
been used for generating medical text. Despite 
advances in text generation, AI/ML cannot 
replace human medical writers and their use in 
medical writing raises ethical concerns.32 AI-
generated text has the potential to perpetuate 
bias, misinformation, and plagiarism. Further -
more, computer models need to be retrained 
regularly to ensure they are up to date, as the field 
of medicine is constantly evolving. Given these 
concerns, medical writers are indispensable for 
safeguarding the integrity of medical information 
and its compliance with ethical and regulatory 
standards. 

By breaking down complex data, working 
with different teams, ensuring transparency, and 
getting results ready for publication, medical 
writers help make AI insights easier to under -

Table 1. Key responsibilities of medical writers in translating results of real-world evidence models

Key responsibility 
 
Bridging the language 

gap 

 

Distilling key insights 

 

 

Crafting clinically 

meaningful narratives  

 

 

Visual interpretation 

support  

 

Ensuring scientific and 

regulatory rigour 

 

Communicating data 

generation techniques 

using AI/ML

Description 
 
Medical writers act as translators between data scientists and healthcare audiences. They interpret model 

assumptions and methodology, data inputs and limitations, and outputs, such as risk scores, clusters, or probabilities. 

 

Writers identify and emphasise results that reveal clinically significant subgroups, suggest treatment response 

differences, and indicate burden of disease or health outcomes. 

 

An example: “The model identified a patient segment at threefold higher risk of hospitalization within 12 months, 

characterised by polypharmacy, diabetes, and advanced age. This suggests a target for early intervention.” 

This kind of narrative brings model results into the clinical and strategic realm. 

 

Writers also help develop or adapt visualisations (e.g., Kaplan-Meier curves, cluster heatmaps), annotate plots to 

highlight clinically relevant findings, and ensure visual outputs are publication – or submission-ready. 

 

In RWE deliverables, especially for HTA or regulatory use, writers must clearly describe the model type, inputs, and 

limitations, avoid over-interpretation of exploratory analyses, and frame findings within accepted scientific standards. 

 

Developing peer-reviewed manuscripts and conference presentations that highlight the value of AI/ML techniques in 

RWE generation.27

Abbreviations: AI, artificial intelligence; HTA, health technology assessment; ML, machine learning; RWE, real-world evidence. 
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stand and use in healthcare. As such, medical 
writers are essential for clearly and accurately 
communicating complex scientific information 
and making sure that AI-derived findings meet 
ethical and regulatory standards. Since AI 
continues to shape healthcare, the need for 
skilled medical writers will grow. 
 
Conclusion 
Medical writers are indispensable in the AI-
enhanced RWE ecosystem, ensuring that 
complex data is transformed into meaningful 
insights. By collaborating with data scientists, 
clinicians, and regulators, medical writers can 
help unlock the full potential of AI in healthcare. 
Medical writers do not need to be data scientists, 
but they must understand the fundamentals of 
analytic methodologies. As the field evolves, 
medical writers must embrace AI as a tool for 
innovation, while maintaining the highest 
standards of scientific integrity and ethical 
communication. 
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