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Abstract
The clinical research landscape is gradually
changing as we enter the era of big data. Big
data sources are multiplying as existing
sources collide to create expanded platforms
that serve wider areas of expertise. Clinical
study designs incorporating big data have
started to appear and we expect this design
phenomenon to grow. Big data offers
unprecedented advantages in clinical research,
but much remains to be done in assuring
accessibility, validity, quality, and privacy
protection. For these reasons, medical writers
must understand big data, the strengths and
the potential limitations of the data used, and
should consider big data impact on study
design, protocol, and clinical study report
authoring. This article provides an overview
of big data sources and provides insights on
how big data utility could change the clinical-
regulatory medical writing landscape. 

The changing landscape of
clinical research
The overall low generalisability of clinical trial
results to routine clinical practice requires new
approaches in clinical research.1 Today,
increasing data breadth and depth coupled with
advancing data science offer new ways to assess a
medicinal product across multiple data sources

and at every step of the product’s life cycle. We
are entering the era of big data. EMA defines big
data as “extremely large datasets which may be
complex, multi-dimensional, unstructured and
heterogeneous, which are accumulating rapidly
and which may be analysed computationally to
reveal patterns, trends, and associations”.2

Myriad big data sources are now available,
including those considered fit for regulatory
decision-making. Table 1 lists example data
sources – from the most traditional to relatively
newer ones together with their main strengths
and limitations.3–11 This article discusses some
of these data sources that are being actively
applied in trials.

New ways to use patient registries
Patient registries are “organised systems that use
observational methods to collect uniform data
over time to evaluate specified outcomes for 
a population defined by a particular disease,
condition, or exposure”.7,12,13 Patient registries
could be a powerful tool in clinical studies 
as we see in VALIDATE-SWEDEHEART
(clinicaltrial.gov number: NCT02311231), a
prospective study that used the Swedish
Coronary Angiography and Angioplasty Registry
for both primary data (data collected for a
specific, planned study, such as those of
randomised clinical trials [RCT]) and secondary
data (data already available for another purpose,
such as insurance claims data) collection.14,15

The study used the registry to assess and enrol
potential subjects; collect their demographic and
baseline data; and randomise subjects to treat -
ment of percutaneous coronary intervention
with either bivalirudin or heparin. After treat -
ment, no study visit was required. All study data,
including death, myocardial infarction, and major
bleeding, were collected directly from the reg -
istry, via telephone calls and hospital records.15,16

This study showcased the advantages of a
registry-based RCT in which investigators could
enrol many more subjects in a shorter time and
the study gained both internal and external
validity through the robust design of an RCT that
utilised a data source (registry) with higher
generalisability than a more traditional design
would confer.17 

Another advantage of working with registries

is the accessibility to clinical data for rare
diseases, and in which RCTs are often considered
unfeasible.18 Regulators recognise this; in one
particular example, due to the low availability of
previously untreated haemophilia A patients, the
obligation to perform RCTs in these patients has
been replaced for marketing authorisation
applications of recombinant and human plasma-
derived factor VIII products with a new require -
ment to monitor patients in a registry. The
updated guideline also lists the core parameters
to support homogeneous data collection across
multiple registries – which should be taken into
account at an early, pre-authorisation stage of
study design. Registries may also be rich sources
of secondary data from which suitable data could
be extracted to serve as external controls, identify
eligible patients, prevent duplicative data
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collection in clinical trials, and provide additional
data for benefit/risk assessments.19 

Using social media for pharmacovigilance
Data from social media are unique because they
come directly from patients who have actively
decided to share their information.11 The use of
social media in the field of pharmacovigilance
and signal detection is not new. One example is
the once-hyped Google Flu Trends, which was a
web service introduced in 2008 providing
estimates of influenza activity by analysing Google
search queries. Google developed prediction
models that could estimate influenza activity a
couple of weeks ahead of the Centres for Disease
Control and Prevention’s periodic reports.20

However, the service was terminated in 2015
after algorithmic glitches were detected.21,22

Despite Google’s failure, numerous studies
are testing new ways to utilise comments made
on social media to identify potential adverse
events; these studies suggest that social media is

a promising tool for pharmacovigilance activities,
but much work remains to determine its utility
and validity.23,24 Other areas of potential
applications include data utilisation in effective -
ness assessment, and as a communication tool to
gather patient-centric data and to contact
patients.11

Integrating mHealth in clinical studies
WHO defines mobile health, or mHealth, as the
practice of medicine and public health supported
by mobile devices for collecting data through
symptom monitoring applications, implantable
diagnostics, and wearable motion detectors.25

The 12-week exploratory Lilly Exploratory
Digital Assessment Trial sponsored by Eli Lilly
and Apple Inc. was conducted to explore how
well mHealth data could discern those with mild
cognitive impairment and early Alzheimer’s
disease from those free of these conditions. The
model, applied to the data captured through
distributed mobile phones and wearable devices,

was able to discern patients from non-patients,
suggesting that mild cognitive impairment could
be detected in advance.26 mHealth are in
increasing use in clinical studies, acting as data
sources for various real-time biometrics and
other patient-reported outcomes. Although these
novel modelling tools hold tremendous poten -
tial, they should be further assessed to ensure that
they are “reliable, validated, reproducible, and
predictable” to be used for the purpose of
regulatory decision-making.8 

Data collection through mobile devices will
likely become more common in clinical studies
following the release of the FDA’s MyStudies App
in 2018 – a digital platform used for multi-site or
multi-database studies to collect primary data
directly from patients’ mobile devices. The
application will be linked to an individual’s
electronic medical record (EMR) and enhanced
with additional functions such as e-consent,
eligibility test, survey delivery, notifications, and
data validation.27,28 It holds great potential for
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Table 1. Sources of big data and their strengths and limitations

Clinical trial data
(both interventional
and non-
interventional trials)3

Spontaneous adverse
drug reports4

Drug consumption
data5

Administrative claims
data5,6

Electronic medical
records (EMR)5,6

Patient registry 5–8 

Biomarkers (including
any “omics” data)8–10

l Well-structured data
l High internal quality (integrity/veracity)
l Non-selective sharing
l Publicly accessible trial documents (e.g., protocol,

statistical analysis plan)

l System has a legal/regulatory framework
l Data consistency at a global level
l Competent in detecting new risks of medicines 
l Multi-dimensional data; various sources and safety

concerns (e.g., medication errors, quality defects,
cases of abuse/misuse, occupational exposure)

l Cover large populations

l Data consistency from standardised coding
l Longitudinal record; in EU and in countries with

public healthcare service, follow-up period is longer;
representative for the source population at a national
level 

l Provide linkage to data sources
l High quality/complete drug exposure data  
l Data on individual's location available for geocoding

l Diverse clinical data; can complement claims data 
l Longitudinal in nature
l Higher validity of diagnosis than claims data from

routine use
l Provide linkage to data sources 

l Data consistency
l Established, large registry programmes
l Able to observe the course of disease and effects of

new treatments 

l Precision medicine
l Identification of unique molecular markers of

disease/responsiveness to medications

l Data format and variable definitions across different trials are not
standardised

l Under/over-reporting
l Risk of bias (the safety concern may be the result of increased

media attention)

l Lack individual patient data

l Heterogeneous data in format, variables, quality, and completeness
l Misclassification of diagnosis/exposure/outcome 
l Data might not be current 
l May lack data on secondary care 
l Lack of clinical details
l Data protection legislation may prevent linkage between different

health care providers 
l Lack of lifestyle/socio-economic factors; lack of control for

confounding factors
l Lack over-the-counter drug data

l Heterogeneous data in format, variables, quality, and
completeness

l Patient privacy concerns
l May contain only one type of care setting (primary or secondary) 
l Lack of lifestyle/socio-economic factors; lack of control for

confounding factors 
l Lack over-the-counter drug data

l Limited to specific procedures, diseases, or settings
l Data might not be current 
l Discrepancy between collected data and data requested by the

regulatory authority
l Inconsistent data and varying quality across registries  
l May need source data verification

l High genetic variation
l False positives/negatives
l Further validation needed to associate biomarker data to patient

outcomes
l Lack of publicly accessible, clinically meaningful information

from the genomic database
l Lack of data standardisation 
l Patient privacy concerns, especially for patients with rare diseases
l Heterogeneous data 

Data source                              Strengths                                                                                                           Limitations
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Medical imaging3,6

Social media6,11

Mobile health
(mHealth) and
wearable devices6,8,11 

l General data consistency 
l Widely used in clinical trials; unexplored potential

in various therapeutic areas 

l Wide reach of the internet
l Various types of data
l Result of active sharing from patients

l Collected biometrics data may allow control for
confounding factors 

l Patient-centric data 
l Continuous data from real life (vs. episodic data

restricted to healthcare setting)
l Data readily available for research purposes;

platforms support central data management,
analysis, and reporting and can often be directly
linked to an electronic case report form 

l Devices can monitor parameters to
calculate/monitor drug dose

l Lack of accessibility
l Ethical issues related to data sharing
l Challenges on analysing/integrating imaging data with other data

sources

l Heterogeneous data
l Lack of specificity in general social media; data prone to bias 
l Limited follow up; difficult to verify/validate 
l Lacks consideration of the characteristics of the patients included
l Lacks Good Clinical Practice adherence
l Lacks validity and reliability 
l Patient privacy concerns

l Further validation needed to discern clinically important ‘signals’;
unknown sensitivity of the collected data

l Precision does not necessarily mean accuracy
l Output is highly variable across different types of device
l Output depends on the level of user interaction 
l Lack of familiarity with interpretation of the data
l Potential challenges in timing of surveys in relation to other

healthcare data
l Patient privacy and security concerns, e.g., hacking

Data source                             Strengths                                                                                                           Limitations

pragmatic trials – which are evidential for the use
of a clinical practice intervention and may, there -
fore, guide policy-making, and observational
trials – trials without an intervention.29 

In the wake of the recent coronavirus disease
2019 (COVID-19) pandemic, many mHealth
initiatives have been developed for gathering
information to help manage the outbreak. For
example, Scripps Research Translational Institute
launched the DETECT study in March 2020 to
collect health data through wearables like
smartwatches and activity trackers for a public
health surveillance programme for early
detection of viral diseases; at the same time,
Stanford Medicine also initiated the COVID-19

Wearable Study that serves the same purpose.30–

33 In April 2020, the two platforms joined forces,
together with Fitbit, to create a consortium which
will aggregate data for knowledge sharing and
drive wearables research.32,34

Larger data platforms
Existing data are expanding, and are also being
linked across various networks, creating larger
data platforms. Sentinel is FDA’s national safety
surveillance system to monitor its regulated
medical products. The system extracts electronic
health records (EHRs) from various networks,
mostly from health insurers.35 Sentinel is now
collaborating with over 40 other networks across

three centres – Sentinel Operations Centre,
Innovation Centre, and Community Building
and Outreach Centre – to cover wider areas 
of scientific expertise, improve technologies
translation, and encourage communication and
collaboration.35

A Sentinel collaborator, Patient-Centered
Outcomes Research Network (PCORnet®), is a
partnership of over 10 networks. PCORnet®
contains more EMR data with various types of
individual patient data, including laboratory 
test results, vital signs, biospecimen data,
genomic data, and patient satisfaction data.36,37

ADAPTABLE (clinicaltrials.gov number:
NCT02697916), a pragmatic clinical study that
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compares the effectiveness of two doses of aspirin
(81 mg and 325 mg) in approximately 20,000
patients, uses the existing EHRs and a web-based
patient portal in PCORnet® to identify eligible
patients, obtain consents, randomise, and follow
up with patients.38 

No such platform is available in the EU yet.
However, recently the Heads of Medicines
Agencies (HMA)/EMA Task Force on Big Data
proposed their plans to establish an EU platform,
namely Data Analysis and Real-World Interro -
gation Network (DARWIN), to access and
analyse healthcare data from across the EU to
inform regulatory decision-making. This
initiative is one of the many efforts undertaken
by the EMA to optimise the use of big data in
medicines regulation.39 During the recent
COVID-19 pandemic, international regulators
and experts from WHO and European
Commission acknowledged the value of real-
world data from COVID-19 observational
studies and how these data could complement
clinical trials in finding solutions to prevent and
treat COVID-19. Public platforms, such as EU
PAS Register and ClinicalTrials.gov, were
identified as suitable platforms to share and
exchange information about COVID-19
observational studies.40,41

On the horizon 
In the future, it may be possible to create a
complete, longitudinal record of an individual
starting from the omics level. Collab -
orations between academia, compa -
nies, and regulatory authorities
nationally and internationally
culminated in the initiative 
of the Electronic Medical
Records and Genomics
(eMERGE) Network. Since
2007, the Network has brought
together researchers in genomics,
statistics, ethics, informatics, and
clinical medicine areas with the goal to
combine a biological materials repository with
EMR systems for research at the genomic
level.9,42

About 90% of medical data are in the form of
images captured with increasingly higher quality
and improved resolution. Much of these
voluminous data are stored unanalysed.43 To
utilise these data, the UK Biobank Imaging Study
aims to develop longitudinal records from
volunteers consisting of their brain, heart, and
body imaging data; biomarker and genetic
analysis results; physical measurements; and self-
reported health and lifestyle data. These records

can also be linked to the individual’s National
Health Service records.44,45 In April 2020, the
UK Biobank announced that it would grant
access to the health data of its 500,000
participants to researchers for health-related
research. These data include results of COVID-
19 tests, primary care data, hospital episodes, and
intensive care data.46 

The exponential advances in personal omics
profiling, coupled with the increasing amount of
high-frequency data using wearable devices,
omics data, imaging data, as well as enlarging
platforms and dynamic patient-centred interfaces
are set to greatly affect how we conduct clinical
research.

Guidelines for using big data in regulatory
decision-making 
The message from regulators is that we must
embrace the use of big data. In January 2017, the
International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for
Human Use Assembly (ICH) endorsed the ICH
reflection paper entitled “ICH Reflection on
“GCP Renovation”: Modernisation of ICH E8
and Subsequent Renovation of ICH E6”47 to
address the increasing diversity of clinical trial
designs and data sources being employed. 

FDA has also published their final guidance
on the “Use of Real-World Evidence to

Support Regulatory Decision-
Making for Medical Devices”

(August 2017),48 “Use of
Electronic Health Record Data
in Clinical Investigations”
( July 2018),49 and a draft
guidance for “Submitting

Documents Using Real-World
Data and Real-World Evidence to

FDA for Drugs and Biologics” (May
2019)50 to guide and encourage the use

of big data in the industry. 

Using big data in medical
writing 
Using big data to improve study efficiency
As regulatory medical writers, we need to
consider how best to leverage big data into our
work outputs. Big data could be applied at any
stage of study design, through to enrolment and
data analysis.51 Before study initiation, we could
use existing big data, sourced from registries and
EHRs to help identify an appropriate target
population, define more targeted eligibility

As regulatory
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outputs. 
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criteria, determine if a sufficient
number of subjects are likely to be
available, and even obtain baseline
data directly from the data sources.
Thus, study efficiency could be greatly
improved by reducing the cost of and time
for recruitment, reducing patient attrition and
minimising possible changes to the protocol
down the line.51,52

Throughout the study, data collected from
various digital sources (such as mobile appli -
cations and wearable devices) may be available
faster than data collected by traditional methods,
thereby allowing for prompt futility analyses in a
study or benefit/risk assessment in a post-
marketing surveillance, hence more rapid
decision-making. Big data platforms like
registries also help track patients during study
follow-up under their usual care routines, thus
minimising patients being lost to follow-up and
reducing missing data during a study.51

Using big data in study design
For some diseases where patient enrolment may
be problematic (e.g., rare diseases) or randomis -
ing patients to the control group may be
unethical (e.g., cancer), using an external control
group can be considered. An external control
group refers to subjects who are selected from an
external source, e.g., existing clinical trial data and
EHRs. The biggest challenge of using an external
control is bias control. FDA suggests the use of
external controls only under certain conditions,
e.g., when we expect distinct treat ment effects
between the test and external control groups.
External control should be selected from data
sources that are most appropriate to the study
purpose and should align, as much as possible,
with the study eligibility criteria to minimise
potential confounding and selection biases.53

Another important consideration is the
availability of similar endpoint assessments
between the test group and the external control
group to allow comparison between them. In this
case, external control groups derived from
existing clinical studies with similar purposes
may be more applicable than those from EHRs
or registries.54 

Heterogeneity in the data is the intrinsic
underlying issue in most data sources and this
aspect should be thought through in the study
design and statistical analysis, in consultation
with biostatistical colleagues – our natural
partners in analysis and reporting. When

selecting which databases to use, accessibility,
storage, and quality of the data are paramount
considerations as they ensure reliability and
validity of the data. We must be mindful while
extracting data that they may contain missing
information that could bias our interpretation of
the data. For example, missing data does not
mean the absence of an event; the absence of
smoking status in the medical record may not
mean the patient is not a smoker.

Designing a study using big data requires
rather different elements and methods from that
of traditional RCTs. Existing guidelines such as
the European Network of Centres for Pharma -
coepidemiology and Pharmacovigilance “Guide
on Methodological Standards in Pharmaco -
epidemiology”,14 its protocol checklist,55 and the
Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) checklist56

provide some starting guidance for medical
writers on important elements that should be
considered, such as procedures for selecting
target population, defining covariates, methods
to address each type of bias, and related statistical
analyses.

It is important to remember that study design
is always a collaborative endeavour with
colleagues in other functional areas such as
biostatistics and medical affairs. As medical
writers, we can and should be influencers. We can
raise awareness of the potential of big data in
study design to ensure that all stakeholders
consider its practical utility.

Permission from a subject to
use his or her personal health
data, in the form of informed
consent or authorisation with

pre-defined purposes, is
required before data collection. 

Permission for secondary use of personal data
Permission from a subject to use his or her
personal health data, in the form of informed

consent or authorisation with pre-
defined purposes, is required before
data collection. Big data analytics

seek patterns and associations from big
datasets that are often generated by

pooling or linking data from various studies
and databases. Therefore, secondary use, i.e. use
of existing data collected for other purposes, is
more common for big data analytics. 

Personal data that will be collected, pro -
cessed, or stored within the EU need to comply
with the General Data Protection Regulation
(GDPR). Under the GDPR, new consent is not
required for the processing and secondary use of
personal data for scientific research purposes
provided specific adequate safeguards and
conditions are adhered to, such as pseudonymi -
sation.57,58 GDPR also acknowledges that it is
“often not possible to fully identify the purpose
of personal data processing for scientific research
purposes at the time of data collection” and
allows subjects to consent to a more general
purpose. Nonetheless, in addition to the specific
consent, GDPR requires that a separate consent
with the general areas of secondary research be
specified and options to “consent only to certain
areas of research or parts of the research projects”
be provided before data collection.59,60 Of note,
the use of de-identified personal data does not fall
within the scope of the GDPR.61

In the US, the “Revised Common Rule” that
took effect in January 21, 2019, accelerates the
secondary use of data through the introduction
of Broad Consent. Broad Consent allows subjects
to consent to unspecified future research that
may store, maintain, or use their identifiable
private information or identifiable biospecimens
for secondary research before data collection.
Important information, such as the types of
research that may be conducted, information that
may be used, the institutions that may reuse the
information, and the time frame of the consent
must be included in the Broad Consent.62,63 

Under the Health Insurance Portability and
Accountability Act (HIPAA) Privacy Rule,
“covered entities”, including health plans, health
care clearinghouses, and health care providers,
should obtain an individual’s written authori -
sation for any use of protected health information
(PHI) for secondary research.64,65 Core
elements, such as the purpose of the use, the
specific information to be used, the persons who
can use the PHI, and the time frame of the
authorisation must be included in the

Heterogeneity in the data is the intrinsic underlying issue in
most data sources and this aspect should be thought through

in the study design and statistical analysis, in consultation
with biostatistical colleagues – our natural 

partners in analysis and reporting. 
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authorisation.65 An Institutional Review Board
or privacy board waiver of authorisation is
required to use PHI for research purposes if
individual authorisation is not available.66

Currently, there are no restrictions (i.e. neither
consent nor HIPAA authorisation is required) on
the use of de-identified health information.67,68

Big data is expected to offer
unprecedented advantages in

every step of clinical research by
providing alternative study

design, improving study
efficiency, and accelerating

regulatory decision-making. 

Conclusion
Big data is expected to offer unprecedented
advantages in every step of clinical research by
providing alternative study design, improving
study efficiency, and accelerating regulatory
decision-making. At the same time, they also
pose new challenges, especially in ensuring data
quality and privacy protection. An enormous
amount of health data has become available
during the recent COVID-19 pandemic, and we
have directly experienced how researchers and
regulators across the world use big data in the
fight against COVID-19. Undoubtedly, we as
medical writers should start honing the necessary
skills and competencies to better prepare
ourselves as we embrace the era of big data. 
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